CWE-364: Signal Handler Race Condition

ID CWE-364
Abstraction Base
Structure Simple
Status Incomplete
Number of CVEs 7
The product uses a signal handler that introduces a race condition.

Race conditions frequently occur in signal handlers, since signal handlers support asynchronous actions. These race conditions have a variety of root causes and symptoms. Attackers may be able to exploit a signal handler race condition to cause the product state to be corrupted, possibly leading to a denial of service or even code execution.

These issues occur when non-reentrant functions, or state-sensitive actions occur in the signal handler, where they may be called at any time. These behaviors can violate assumptions being made by the "regular" code that is interrupted, or by other signal handlers that may also be invoked. If these functions are called at an inopportune moment - such as while a non-reentrant function is already running - memory corruption could occur that may be exploitable for code execution. Another signal race condition commonly found occurs when free is called within a signal handler, resulting in a double free and therefore a write-what-where condition. Even if a given pointer is set to NULL after it has been freed, a race condition still exists between the time the memory was freed and the pointer was set to NULL. This is especially problematic if the same signal handler has been set for more than one signal -- since it means that the signal handler itself may be reentered.

There are several known behaviors related to signal handlers that have received the label of "signal handler race condition":

  • Shared state (e.g. global data or static variables) that are accessible to both a signal handler and "regular" code
  • Shared state between a signal handler and other signal handlers
  • Use of non-reentrant functionality within a signal handler - which generally implies that shared state is being used. For example, malloc() and free() are non-reentrant because they may use global or static data structures for managing memory, and they are indirectly used by innocent-seeming functions such as syslog(); these functions could be exploited for memory corruption and, possibly, code execution.
  • Association of the same signal handler function with multiple signals - which might imply shared state, since the same code and resources are accessed. For example, this can be a source of double-free and use-after-free weaknesses.
  • Use of setjmp and longjmp, or other mechanisms that prevent a signal handler from returning control back to the original functionality
  • While not technically a race condition, some signal handlers are designed to be called at most once, and being called more than once can introduce security problems, even when there are not any concurrent calls to the signal handler. This can be a source of double-free and use-after-free weaknesses.

Signal handler vulnerabilities are often classified based on the absence of a specific protection mechanism, although this style of classification is discouraged in CWE because programmers often have a choice of several different mechanisms for addressing the weakness. Such protection mechanisms may preserve exclusivity of access to the shared resource, and behavioral atomicity for the relevant code:

  • Avoiding shared state
  • Using synchronization in the signal handler
  • Using synchronization in the regular code
  • Disabling or masking other signals, which provides atomicity (which effectively ensures exclusivity)

Modes of Introduction

Phase Note
Implementation

Applicable Platforms

Type Class Name Prevalence
Language C
Language C++

Relationships

View Weakness
# ID View Status # ID Name Abstraction Structure Status
CWE-1000 Research Concepts Draft CWE-362 Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition') Class Simple Draft
CWE-1000 Research Concepts Draft CWE-415 Double Free Variant Simple Draft
CWE-1000 Research Concepts Draft CWE-416 Use After Free Variant Simple Stable
CWE-1000 Research Concepts Draft CWE-123 Write-what-where Condition Base Simple Draft

CVEs Published

CVSS Severity

CVSS Severity - By Year

CVSS Base Score

# CVE Description CVSS EPSS EPSS Trend (30 days) Affected Products Weaknesses Security Advisories Exploits PoC Pubblication Date Modification Date
# CVE Description CVSS EPSS EPSS Trend (30 days) Affected Products Weaknesses Security Advisories PoC Pubblication Date Modification Date
Loading...
Loading...